Standard Method of Test for

Determination of Asphalt Tack Coat Roadway Placement Rate

SCDOT Designation: SC-T-86 (9/08)

1. SCOPE

1.1. This method covers the determination of liquid asphalt tack rate with and without using specific properties such as temperature correction and residual asphalt for emulsified asphalt products only

2. REFERENCED DOCUMENT

2.1. Table of Temperature-Volume Corrections for Emulsified Asphalts

3. SUMMARY OF TEST METHOD

3.1. The road is measured and the tack truck meter is checked before and after coverage. The rate of coverage is determined using the temperature-volume correction for emulsion used.

4. SIGNIFICANCE AND USE

4.1. The purpose of this procedure is to ensure that the proper amount of asphalt tack is applied to the roadway according to SCDOT specifications. The asphalt tack is used to bonding layers of asphalt mixture together, and to prevent slippage.

5. APPARATUS

5.1. Calculator

6. TEST SPECIMEN

6.1. None

7. PROCEDURE

- 7.1. The roadway must be measured first to determine the proper area for calculating tack rate. This measurement can be taken in many different ways such as pavement markings, surveys, or using any other measuring device such a tape measure. Both the longitudinal and transverse area of the roadway covered with the tack will be measured in order to achieve a total roadway area in square yards or square meters.
- 7.1.1. The quantity of tack used can be measured from the tack distributor by reading the attached flow meter. The meter should be read at the beginning and the end of the tack run. The difference from the beginning and to the end is the total amount of gallons used to spray tack on the calculated area of roadway.

7.1.2. The temperature of the tack has to be measured from the distributor to determine the proper temperature-volume correction needed to adjust the amount of tack being used. This temperature needs to be referenced to the attached table (Temperature –Volume Correction for Emulsified Asphalts). The temperature-volume correction must be applied to achieve a correction for total gallons or liters of tack used to cover the roadway.

8. CALCULATIONS

8.1. The tack rate will be calculated using the corrected amount of gallons or liters used to cover the calculated roadway. The corrected amount of tack used will show the proper temperature correction and dilution rate based on residual asphalt (when applicable) from the liquid asphalt tack supplier.

Example 1: CSS-1 Tack (without residual asphalt content)

Area of Roadway: Width: 12 ft. Length: 4765 ft.

Length x Width = Total Area in Square Feet = 12 ft. x 4765 ft. = 57,180 ft²

Total Square Feet = $57,180 \text{ ft}^2/(9\text{ft}^2/\text{yd}^2) = 6553.3 \text{ yd}^2$

Total Gallons of Tack Used = Beginning Distributor Reading - Ending Distributor Reading

123 - 478 = 355 gallons measured

Corrected gallons of Tack Used = CSS-1 (tank temp of 150° F)

355 gallons x .97750 (referenced from figure SC-T-86-A) = 347.0 gallons used

Corrected Tack Rate = Total Corrected Amount of Tack Used / Total Area Covered in Square Yards

 $347.0 \text{ g} / 6553.3 \text{ yd}^2 = 0.053 \text{ g/yd}^2$

Example 2: CRS-2 Tack (with use of residual asphalt content)

Area of Roadway: Width: 10 ft. Length: 3000 ft.

Length x Width = Total Area in Square Feet = 10 ft. x 3000 ft. = 30,000 ft²

Total Square Feet = $30,000 \text{ ft}^2 / (9\text{ft}^2/\text{yd}^2) = 3333.3 \text{ yd}^2$

Total Gallons of Tack Used = Beginning Distributor Reading - Ending Distributor Reading

120 - 500 = 380 gallons measured

Corrected gallons of Tack Used = CRS-2 (tank temp of 122 degrees F)

380 gallons x .98450 (referenced from figure SC-T-86-A) = 374.1 gallons used

Corrected Tack Rate = Total Corrected Amount of Tack Used / Total Area Covered in Square Yards

 $374.1 \text{ g} / 3333.3 \text{ yd}^2 = 0.1122 \text{ g/yd}^2$

Calculate the residual tack rate = Calculated tack rate x % residual asphalt CRS-2 (emulsion supplier submitted the tack as 58% residual)

 $0.1122 \text{ g/yd}^2 \text{ X } 0.58 = 0.065 \text{ g/yd}^2$

9. REPORT

9.1. Report the corrected rate of tack placed on the Form 400.04.

TEMPERATURE-VOLUME CORRECTIONS FOR EMULSIFIED ASPHALTS

M= Multiplier for correcting volumes to the basis of 15.6°C (60°F)

°C	°F	M	°C	°F	M	°C	°F	M
10.0	50	1 .00250	35.0	95	.99125	57.8	136	.98100
10.6	51	1.00225	35.6	96	.99100	58.3	137	.98075
11.1	52	1.00200	36.1	97	.99075	58.9	138	.98050
11.7	53	1.00175	36.7	98	.99050	59.4	139	.98025
12.2	54	1.00150	37.2	99	.99025	60 0	140	.98000
12.8	55	1.00125	37.8	100	.99000	60.6	141	.97975
13.3	56	1.00100	38.3	101	.98975	61.1	142	.97950
13.9	57	1.00075	38.9	102	.98950	61.7	143	.97925
14.4	58	1.00050	39.4	103	.98925	62.2	144	.97900
15.0	59	1.00025	40.0	104	.98900	62.8	145	.97875
15.6	60	1.00000	40 6	105	.98875	63.3	146	.97850
16.1	61	.99975	41.1	106	.98850	63.9	147	.97825
16.7	62	.99950	41.7	107	.98825	64.4	148	.97800
17.2	63	.99925	42.2	108	.98800	65.0	149	.97775
178	64	.99900	42.8	109	.98775	65.6	150	.97750
18.3	65	.99875	43.3	110	.98750	66.1	151	.97725
18.9	66	.99850	43.9	111	.98725	66.7	152	.97700
19.4	67	.99825	44.4	112	.98700	67.2	153	.97675
20 0	68	.99800	45.0	113	.98675	67.8	154	.97650
20 6	69	.99775	45.6	114	.98650	68.3	155	.97625
21.1	70	.99750	46.1	115	.98625	68.9	156	.97600
21.7	71	.99725	46.7	116	.98600	69.4	157	.97575
22 2	72	.99700	47.2	117	.98575	70.0	158	.97550
22.8	73	.99675	47.8	118	.98550	70.6	159	.97525
23.3	74	.99650	48.3	119	.98525	71.1	160	.97500
23.9	75	.99625	48.9	120	.98500	71.7	161	.97475
24.4	76	.99600	49.4	121	.98475	72.2	162	.97450
25.0	77	.99575	50.0	122	.98450	72.8	163	.97425
25.6	78	.99550	50.6	123	.98425	73.3	164	.97400
26.1	79	.99525	51.1	124	.98400	73.9	165	.97375
26.7	80	.99500	51.7	125	.98375	74.4	166	.97350
27.2	81	.99475	52.2	126	.98350	75.0	167	.97325
27.8	82	.99450	52.8	127	.98325	75.6	168	.97300
28.3	83	.99425	53.3	128	.98300	76.1	169	.97275
28.9	84	.99400	53.9	129	.98275	76.7	170	.97250
29.4	85	.99375	54.4	130	.98250	77.2	171	.97225
30.0	86	.99350	55.0	131	.98225	77.8	172	.97200
		.99325	55.6	132	.98200	78.3	173	.97175
30.6	87	.99323	56.1	133	.98175	78.9	174	.97150
31.1	88		56.7	134	.98173	79.4	175	.97125
31.7	89	.99275				13.4	175	.71123
32.2	90	.99250	57.2	135	.98125			
32.8	91	.99225						
33.3	92	.99200						